The approximate measure, in radians, of the central angle of the circle corresponding to two decimal places 3.77
In a circle centered at point o, the ratio of the area of sector AOB to the area of the circle. Calculating the measure of central angle
From the question, we are to calculate the measure of the central angle corresponding to arc AB
From the given information, The ratio of the area of sector AOB to the area of the circle is 3/5
The area of a sector is given by the formula,
Area of sector = (θ/360°) *πr² , Where 'θ' is the central angle of the circle and 'r' is the radius of the circle
3/5 = θ/2π
5θ = 6π
θ = (6/5) π
= (6/5) * 3.14159
= 18.85/5
= 3.77
Hence, the approximate measure, in radians, of the central angle of the circle corresponding to two decimal places 3.77
Learn more about circle here
https://brainly.com/question/10035649
#SPJ4