Respuesta :

Answer:

x > 2/3  or x < -10/3

Step-by-step explanation:

|3x + 4| > 6

To solve an absolute value inequality of the form |X| > b, where X is an expression, and b is a number, change the inequality into this compound inequality:

X > b or X < -b

Here, X is 3x + 4.

b is 6.

We get the compound inequality:

3x + 4 > 6 or 3x + 4 < -6

3x > 2  or 3x + 4 < -6

x > 2/3  or  3x < -10

x > 2/3  or x < -10/3

Answer:

[tex]\left(- \infty, -\dfrac{10}{3}\right) \cup \left(\dfrac{2}{3}, \infty\right)[/tex]

Step-by-step explanation:

To solve an inequality containing an absolute value:

  1. Isolate the absolute value on one side of the equation.
  2. Apply the relevant absolute rule.
  3. Solve both cases.

Given inequality:

[tex]|3x+4| > 6[/tex]

Apply the absolute rule:

[tex]\textsf{If }\:|u| > a,\:a > 0\:\textsf{ then }\:u < -a \:\textsf{ or }\: u > a[/tex]

Therefore:

[tex]\begin{aligned}\text{\underline{Case 1}} && \text{\underline{Case 2}}\\3x+4 & < -6 \quad & 3x+4 & > 6\\3x & < -10 \quad & 3x & > 2\\x & < -\dfrac{10}{3} \quad & x & > \dfrac{2}{3}\end{aligned}[/tex]

So the solution to the inequality in interval notation is:

[tex]\left(- \infty, -\dfrac{10}{3}\right) \cup \left(\dfrac{2}{3}, \infty\right)[/tex]