What is the volume of the sphere below

Answer:
A.) [tex]\frac{500}{3} \pi units^3[/tex]
Step-by-step explanation:
To find the volume of the sphere, you need to use the following equation:
[tex]V= \frac{4}{3} \pi r^3[/tex]
In this equation, "V" represents the volume (units³) and "r" represents the radius (units). Since you have been given the value of the radius (r = 5 units), you can use it to solve the equation.
[tex]V= \frac{4}{3} \pi r^3[/tex] <----- Volume equation
[tex]V= \frac{4}{3} \pi (5)^3[/tex] <----- Plug 5 into "r"
[tex]V= \frac{4}{3} \pi (125)[/tex] <----- Solve 5³
[tex]V= \frac{500}{3} \pi[/tex] <----- Multiply [tex]\frac{4}{3}[/tex] and 125
Answer:
[tex]\sf A. \quad \dfrac{500}{3} \pi \:\:units^2[/tex]
Step-by-step explanation:
Volume of a sphere
[tex]\sf V=\dfrac{4}{3} \pi r^3[/tex]
(where r is the radius)
From inspection of the given diagram:
Substitute the value of r into the equation and solve for V:
[tex]\begin{aligned}\sf V & = \sf \dfrac{4}{3} \pi r^3\\\\\implies \sf V & = \sf \dfrac{4}{3} \pi (5)^3\\\\& = \sf \dfrac{4}{3} \pi (125)\\\\ & = \sf \dfrac{4 \cdot 125}{3} \pi\\\\& = \sf \dfrac{500}{3} \pi \:\:units^2\end{aligned}[/tex]