Respuesta :

Answer:

A.)  [tex]\frac{500}{3} \pi units^3[/tex]

Step-by-step explanation:

To find the volume of the sphere, you need to use the following equation:

[tex]V= \frac{4}{3} \pi r^3[/tex]

In this equation, "V" represents the volume (units³) and "r" represents the radius (units). Since you have been given the value of the radius (r = 5 units), you can use it to solve the equation.

[tex]V= \frac{4}{3} \pi r^3[/tex]                              <----- Volume equation

[tex]V= \frac{4}{3} \pi (5)^3[/tex]                           <----- Plug 5 into "r"

[tex]V= \frac{4}{3} \pi (125)[/tex]                         <----- Solve 5³

[tex]V= \frac{500}{3} \pi[/tex]                              <----- Multiply [tex]\frac{4}{3}[/tex] and 125

Answer:

[tex]\sf A. \quad \dfrac{500}{3} \pi \:\:units^2[/tex]

Step-by-step explanation:

Volume of a sphere

[tex]\sf V=\dfrac{4}{3} \pi r^3[/tex]

(where r is the radius)

From inspection of the given diagram:

  • r = 5 units

Substitute the value of r into the equation and solve for V:

[tex]\begin{aligned}\sf V & = \sf \dfrac{4}{3} \pi r^3\\\\\implies \sf V & = \sf \dfrac{4}{3} \pi (5)^3\\\\& = \sf \dfrac{4}{3} \pi (125)\\\\ & = \sf \dfrac{4 \cdot 125}{3} \pi\\\\& = \sf \dfrac{500}{3} \pi \:\:units^2\end{aligned}[/tex]