ary1997
contestada

The sum of two numbers is 42. The smaller number is 6 less than the larger number. What are the numbers?

Respuesta :

The sum of two numbers is 42. The smaller number is 6 less than the larger number. What are the numbers? 24 and 18
Answer:  The 2 (TWO) numbers are:  18 and 24 .
______________________________________________
Explanation:
______________________________________________
 x + y = 42 ;   Let "x" be the 'smaller number' ;  "y'' be the "larger number";  

so:  x = y − 6 ;

Now, substitute "y−6" for "x" in the equation:
_____________________________________
   x + y = 42 ;
_________________________________________________
     y − 6 + y = 42 
_________________________________________________
            Combine the "like terms", which appear on the left-hand side of the equation:
__________________________________________________
 y + y , =  2y ;   and rewrite the equation:
__________________________________________________
          2y − 6 = 42 ;
__________________________________________________
Now, add "6" to each side of the equation:
__________________________________________________
          2y − 6 + 6 = 42 + 6 ;
__________________________________________________
  to get:   2y = 48 ;
__________________________________________________
            Now, divide EACH side of the equation by "2";  to isolation "y" on one side of the equation; and to solve for "y" ;
___________________________________________________
              2y / 2  =  48 / 2 ;
___________________________________________________
to get:  y = 24 ; which is the value of one of the number we which to solve for —specifically, the larger number.
____________________________
Now, we can use one of two methods to solve for "x".   In fact, let us use BOTH methods, to ensure we have the same value for "x" (which serves a purpose for confirming our answer and checking our work).  We can start with EITHER method, first in EITHER ORDER; nonetheless, I shall still list them as "Method 1" and "Method 2"—as follows:
_______________________________
Method 1)
           From the original problem,  "The smaller number is 6 less than the smaller number" ;  or:   " x =  y − 6 " .
______________________________________
            Since our obtained/ solved value for "y" is "24" ;  we can plug in the value, "24", for "y"; into this equation; and solve for "x" ;
_____________________________________________
                x = y − 6  = 24 - 6 ; 
 ___________________________
 to get:    x = 18 .  which is the other value we wish to obtain, the "smaller number" value.
______________________________
Method 2)
         From the original problem:  "The sum of two numbers is 42. ...." ; 
______________________________________________
 or, " x + y = 42 " .
______________________________________________
     Using our obtained/solved value for "y", which is: "24", we can plug this value, "24", for "y", into the above equation; and solve for "x";
_________________________________________________
       x +  y = 42 ;  
_________________________________________________
       x + 24 = 42 ;
_________________________________________________
Now, subtract "24" from EACH side of the equation, to isolate "x" on one side of the equation; and to solve for "x" ;
_________________________________________________
      x + 24 − 24  =  42 − 24 ;
_________________________________________________
            x = 18 ;  which is the same value we got for "x" from:  "Method 1" above.
_____________________________
So, the two numbers are:  "18" and "24".   Do they add up to "42"?

18 + 24 =? 42?? Yes.  

Is the "smaller number" (18) , "6 less than the larger number (24)?

Does 18 + 6 =?  24 ??  Yes!   Does 24 − 6 =? 18 ??  Yes!
___________________________________________________
So the two (2) numbers are:    18 and 24 .
____________________________________________