Respuesta :
3. plug in x=-4y to the second one (x+5y=2), we have: -4y+5y=2 => y=2. Then plug y=2 to x=-4y we have x=-4(-2)=8. So the answer will be A: (8,-2)
4. For this one, you add the first equation to the second one, 3x plus 2x = 5x, 4x plus -4x = 0, 31 plus -6= 25. Then we get the final equation is : 5x=25, solve for x we get x=5, plug x=5 to any equation, we get y= 4. So the answer will be B (5,4)
4. For this one, you add the first equation to the second one, 3x plus 2x = 5x, 4x plus -4x = 0, 31 plus -6= 25. Then we get the final equation is : 5x=25, solve for x we get x=5, plug x=5 to any equation, we get y= 4. So the answer will be B (5,4)
Answer: The correct options are
(A) (-8, 2) and (B) (5, 4).
Step-by-step explanation:
(1) We are given to solve the following system of equations by substitution :
[tex]x=-4y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\x+5y=2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]
Substituting the value of x from equation (i) in equation (ii), we get
[tex]x+4y=2\\\\\Rightarrow -4y+5y=2\\\\\Rightarrow y=2.[/tex]
From equation (i), we get
[tex]x=-4\times2=-8.[/tex]
So, the required solution is (-8, 2).
Option (A) is CORRECT.
(2) We are given to solve the following system of equations by elimination :
[tex]3x+4y=31~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)\\\\2x-4y=-6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iv)[/tex]
Adding equations (iii) and (iv), we get
[tex](3x+4y)+(2x-4y)=31+(-6)\\\\\Rightarrow 5x=25\\\\\Rightarrow x=\dfrac{25}{5}\\\\\Rightarrow x=5.[/tex]
From equation (iv), we get
[tex]2\times5-4y=-6\\\\\Rightarrow 10-4y=-6\\\\\Rightarrow 4y=16\\\\\Rightarrow y=\dfrac{16}{4}\\\\\Rightarrow y=4.[/tex]
So, the required solution is (5, 4).
Option (B) is CORRECT.
Thus, the correct options are
(A) (-8, 2) and (B) (5, 4).