Respuesta :
Step-by-step explanation:
Mid point of AB is (0, -3)
Coordinate of A is (6, -5)
By using mid point formula, if P(x, y) and Q (x′, y′), then mid point of P= (x + x′)/2 , (y + y′)/2
So, ( 0, -3)= 6+x/2, -5+y/2
0=6+x/2
0=6+x, x = -6
and, -3= -5+y/2, -6= -5+y....
y = -1
so the coordinate is (-6, -1)
Finding the Midpoint
To find the midpoint of two points, we can use the following formula:
[tex]midpoint=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})[/tex]
- [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are two endpoints
Solving the Question
We're given:
- AA = (6, -5)
- AB = (0, -3)
- BB = [tex](x_2,y_2)[/tex]
Plug the information into the formula:
[tex]midpoint=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})\\\\(0,-3)=(\dfrac{6+x_2}{2},\dfrac{-5+y_2}{2})[/tex]
If [tex]\dfrac{6+x_2}{2}[/tex] must equal 0, then [tex]x_2[/tex] must be -6.
If [tex]\dfrac{-5+y_2}{2}[/tex] must equal -3, then [tex]-5+y_2[/tex] must equal -6, making [tex]y_2[/tex] equal to -1.
Therefore, BB is (-6,-1).
Answer
(-6, -1)