Respuesta :

ashuty

Step-by-step explanation:

Mid point of AB is (0, -3)

Coordinate of A is (6, -5)

By using mid point formula, if P(x, y) and Q (x′, y′), then mid point of P= (x + x′)/2 , (y + y′)/2

So, ( 0, -3)= 6+x/2, -5+y/2

0=6+x/2

0=6+x, x = -6

and, -3= -5+y/2, -6= -5+y....

y = -1

so the coordinate is (-6, -1)

Finding the Midpoint

To find the midpoint of two points, we can use the following formula:

[tex]midpoint=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})[/tex]

  • [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are two endpoints

Solving the Question

We're given:

  • AA = (6, -5)
  • AB = (0, -3)
  • BB = [tex](x_2,y_2)[/tex]

Plug the information into the formula:

[tex]midpoint=(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})\\\\(0,-3)=(\dfrac{6+x_2}{2},\dfrac{-5+y_2}{2})[/tex]

If [tex]\dfrac{6+x_2}{2}[/tex] must equal 0, then [tex]x_2[/tex] must be -6.

If [tex]\dfrac{-5+y_2}{2}[/tex] must equal -3, then [tex]-5+y_2[/tex] must equal -6, making [tex]y_2[/tex] equal to -1.

Therefore, BB is (-6,-1).

Answer

(-6, -1)