Find the x value for point C such that AC and BC form a 2:3 ratio.
Segment Points
A= (-3,5) B= (3,0)

Answers:

A. 6
B. -0.6
C. 4
D. -2.4

Respuesta :

The answer is B.-0.6

Answer:

B. [tex]-0.6[/tex]

Step-by-step explanation:

We have been given point C divides A and B such that AC and BC form a 2:3 ratio.

We will use section formula to solve our given problem, which states when a point P internally divides segment AB is ration m:n, then

[tex][x=\frac{m*x_2+n*x_1}{m+n},y=\frac{m*y_2+n*y_1}{m+n}][/tex]

Upon substituting our given values we will get,

[tex][x=\frac{2*3+3*-3}{2+3},y=\frac{2*0+3*5}{2+3}][/tex]

[tex][x=\frac{6-9}{5},y=\frac{0+15}{5}][/tex]

[tex][x=\frac{-3}{5},y=\frac{15}{5}][/tex]

[tex][x-0.6,y=3][/tex]

Therefore, the value of x is [tex]-0.6[/tex] and option B is the correct choice.