Respuesta :

Answer:

Mean:  160

Median:  150

Mode:  none

Range:  105

Standard deviation:  35.3

Step-by-step explanation:

Given:

  • Mean = 320
  • Median = 300
  • Mode = none
  • Range = 210
  • Standard deviation = 70.6

If each value in the data set is multiplied by a constant value, the mean, median, mode, range, and standard deviation will all be scaled by the same amount.

Therefore, if each value in the data set is multiplied by 0.5:

  • Mean:  320 × 0.5 = 160
  • Median:  300 × 0.5 = 150
  • Mode:  none × 0.5 = none
  • Range:  210 × 0.5 = 105
  • Standard deviation:  70.6 × 0.5 = 35.3

Proof

Data set: {1, 2, 3, 4, 5}

[tex]\sf Mean\:\mu =\dfrac{\sum x_i}{n}= \dfrac{1+2+3+4+5}{5} = 3[/tex]

[tex]\sf Median = 3[/tex]

[tex]\sf Mode = none[/tex]

[tex]\sf Range = 5-1=4[/tex]

[tex]\sf Standard\:deviation\:\sigma=\sqrt{\dfrac{\sum (x_i-\mu)^2}{n}}=\sqrt{\dfrac{10}{5}}=\sqrt{2}[/tex]

If we multiply each value by 0.5, the new data set is:

{0.5, 1, 1.5, 2, 2.5}

[tex]\sf Mean\:\mu =\dfrac{\sum x_i}{n}= \dfrac{0.5+1+1.5+2+2.5}{5} = 1.5[/tex]

[tex]\sf Median = 1.5[/tex]

[tex]\sf Mode = none[/tex]

[tex]\sf Range = 2.5-0.5=2[/tex]

[tex]\sf Standard\:deviation\:\sigma=\sqrt{\dfrac{\sum (x_i-\mu)^2}{n}}=\sqrt{\dfrac{2.5}{5}}=\dfrac{\sqrt{2}}{2}[/tex]

Therefore, if each value in the data set is multiplied by 0.5, the mean, median, mode, range, and standard deviation are all scaled by the same amount.