Respuesta :

ayune

Given a₁ = 100, r=-20, the explicit formula of the geometric sequence is: a(n) = 100 . (-20)ⁿ⁻¹, and the first five terms are: 100, -2000, 40000,  -800000, 16000000

Let

a₁ = the first term

r = ratio

The n-th term of a geometric sequence is given by:

a(n) = a₁ . r^(n-1)

To find the explicit formula, substitute a₁ = 100, r=-20

a(n) = 100 . (-20)ⁿ⁻¹

The first 5 terms:

a₁ = 100

a(2) = 100 . (-20)²⁻¹

       = 100 . (-20)¹ = -2,000

a(3) = 100 . (-20)³⁻¹

       = 100 . (-20)² = 40,000

a(4) = 100 . (-20)⁴⁻¹

       = 100 . (-20)³ = -800,000

a(5) = 100 . (-20)⁵⁻¹

       = 100 . (-20)⁴ = 16,000,000

Learn more about geometric sequence here:

https://brainly.com/question/23756814

#SPJ4