Respuesta :
Answer:0.16=16%
Step-by-step explanation: [tex]\frac{0.16}{100}[/tex]
the 100 is directly under the point so the zero will cancel out leaving= [tex]\frac{16}{100}[/tex]
And [tex]\frac{16}{100}[/tex] equals to 16%
if we had a value "z", and we'd like to know how much is 16% of "z", well
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{16\% of z}}{\left( \cfrac{16}{100} \right)z}\implies 0.16z[/tex]
so we can use the "factor" of 0.16, to get the 16% of any value,
since 0.16 is the decimal representation of the percentage of 16.
hmmm what is 16% of 50 anyway?
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{16\% of 50}}{\left( \cfrac{16}{100} \right)50}\implies 8[/tex]8 out of 50
how much is 16% of 25 anyway?
[tex]\begin{array}{|c|ll} \cline{1-1} \textit{a\% of b}\\ \cline{1-1} \\ \left( \cfrac{a}{100} \right)\cdot b \\\\ \cline{1-1} \end{array}~\hspace{5em}\stackrel{\textit{16\% of 25}}{\left( \cfrac{16}{100} \right)25}\implies 4[/tex]4 out of 25