Respuesta :
After solving the given inequality the answer is x∈(-∞, 1].
What do we mean by inequality?
- An inequality in mathematics is a relationship that makes a non-equal comparison between two numbers or other mathematical expressions.
- It is most commonly used to compare the sizes of two numbers on a number line.
To solve the inequality:
Given: 2(4)x⁺³≤8
Then,
[tex]\begin{aligned}&2 \cdot 4 x^3 \leq 8\\&8 x^3 \leq 8\\&8 x^3+(-8) \leq 8+(-8)\\&8 x^3-8 \leq 8-8\\&8 x^3-8 \leq 0\\&2^3 \cdot x^3-2^3 \leq 0\\&2^3\left(\frac{2^3 \cdot x^3}{2^3}-\frac{2^3}{2^3}\right) \leq 0\\&8\left(x^3-1\right) \leq 0\\&x^3-1 \leq 0\\&x^3-1^3 \leq 0\end{aligned}[/tex]
Then,
[tex]\begin{aligned}&(x-1)\left(x^2+x+1\right) \leq 0\\&\left\{\begin{array}{l}x-1=0 \\x^2+x+1=0\end{array}\right.\\&\left\{\begin{array}{l}(x-1)+1=1 \\x_1=\frac{-1+\sqrt{1-4}}{2} \\x_2=\frac{-1-\sqrt{1-4}}{2}\end{array}\right.\\&\left\{\begin{array}{l}x-1+1=1 \\x_1=\frac{-1+\sqrt{-3}}{2} \\x_2=\frac{-1-\sqrt{-3}}{2}\end{array}\right.\\&\left\{\begin{array}{l}x=1 \\x_1=\frac{-1+\sqrt{3} \cdot \sqrt{-1}}{2} \\x_2=\frac{-1-\sqrt{3} \cdot \sqrt{-1}}{2}\end{array}\right.\end{aligned}[/tex]
So,
[tex]\begin{aligned}&\left\{\begin{array}{l}x=1 \\x_1=\frac{-1+\sqrt{3} \cdot i}{2} \\x_2=\frac{-1-\sqrt{3} \cdot i}{2}\end{array}\right.\\&\left\{\begin{array}{l}x=1 \\x_1=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\x_2=-\frac{1+\sqrt{3} \cdot i}{2}\end{array}\right.\\&\left\{\begin{array}{l}x=1 \\x_1=-\frac{1}{2}+\frac{\sqrt{3}}{2} i \\x_2=-\frac{1}{2}-\frac{\sqrt{3}}{2} i\end{array}\right.\\&\left\{\begin{array}{l}x \leq 1 \\x \geq 1\end{array}\right.\end{aligned}[/tex]
So, finally, it gives:
[tex]2 \cdot 4 x^3 \leq 8\\2 \cdot 4 \cdot 0^3 \leq 8\\\begin{aligned}&x \leq 1 \\&x \in(-\infty, 1]\end{aligned}[/tex]
Therefore, after solving the given inequality the answer is x∈(-∞, 1].
Know more about inequality here:
https://brainly.com/question/24372553
#SPJ4