Respuesta :

i am assuming when you write 27x5 u mean "27 times x to the power of 5".

therefore, your answer is 9x3-11x2-7x

Answer:

[tex]\frac{f(x)}{g(x)}=(9x^3-11x-7x[/tex]

Step-by-step explanation:

Given  function  [tex]f(x) = 27x^5-33x^4-21x^3[/tex] and [tex]g(x)=3x^2[/tex]

We have to find f of x over g of x that is [tex]\frac{f(x)}{g(x)}[/tex]

Consider ,

[tex]f(x) = 27x^5-33x^4-21x^3[/tex] and [tex]g(x)=3x^2[/tex]

To find  [tex]\frac{f(x)}{g(x)}[/tex]

Substitute the values for functions, we get,

[tex]\frac{f(x)}{g(x)}=\frac{27x^5-33x^4-21x^3}{3x^2}[/tex]

Taking [tex]3x^2[/tex] common from numerator, we get,

[tex]\frac{f(x)}{g(x)}=\frac{3x^2(9x^3-11x-7x)}{3x^2}[/tex]

Thus, [tex]3x^2[/tex]  gets cancel, we get,

[tex]\frac{f(x)}{g(x)}=9x^3-11x-7x[/tex]

Thus, value of function  f of x over g of x  is [tex]9x^3-11x-7x[/tex]