Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2862768

_______________


Evaluate the indefinite integral:

[tex]\mathsf{\displaystyle\int\! \frac{x^2}{x^3+1}\,dx}\\\\\\ \mathsf{=\displaystyle\int\! \frac{1}{3}\cdot 3\cdot \frac{x^2}{x^3+1}\,dx}\\\\\\ \mathsf{=\displaystyle \frac{1}{3}\int\! \frac{1}{x^3+1}\cdot 3x^2\,dx\qquad\quad(i)}[/tex]


Make a substitution:

[tex]\mathsf{x^3+1=u\quad \Rightarrow\quad 3x^2\,dx=du}[/tex]


and the integral (i) becomes

[tex]\mathsf{=\displaystyle \frac{1}{3}\int\! \frac{1}{u}\,du}\\\\\\ \mathsf{=\displaystyle \frac{1}{3}\cdot \ell n\!\left|u\right|+C}[/tex]


Substitute back for u = x³ + 1, and you get the result:

[tex]\mathsf{=\dfrac{1}{3}\,\ell n\!\left|x^3+1\right|+C}[/tex]


[tex]\therefore~~\mathsf{\displaystyle\int\!\frac{x^2}{x^3+1}\,dx=\frac{1}{3}\,\ell n\!\left|x^3+1\right|+C}\qquad\quad\checkmark[/tex]


I hope this helps. =)


Tags:  indefinite integral rational function substitution natural logarithm log ln differential integral calculus