Respuesta :

[tex]\bf \begin{cases} \measuredangle A=66^o\\ \measuredangle B=53^o\\ \textit{what about the last angle? C?}\\ \textit{all internal angles in a triangle add up to 180, thus}\\ \measuredangle C = 180-(A+B)\to 61^o \\\\ \textit{side "c" is } 23 \end{cases}\qquad thus\\\\ -----------------------------\\\\ \textit{Law of sines} \\ \quad \\ \cfrac{sin(\measuredangle A)}{a}=\cfrac{sin(\measuredangle B)}{b}=\cfrac{sin(\measuredangle C)}{c}\\\\ -----------------------------\\\\ [/tex][tex]\bf thus \\\\ \cfrac{sin(\measuredangle C)}{c}=\cfrac{sin(B)}{b}\implies \cfrac{sin(61^o)}{23}=\cfrac{sin(53^o)}{b}[/tex]

solve for "b",

when taking the sines, make sure your calculator is in Degree mode, since the angles are in degrees