Respuesta :
[tex]\bf n^{th}\textit{ term of a geometric sequence}
\\\\
a_n=a_1\cdot r^{n-1}\qquad
\begin{cases}
a_1=\textit{first term}\\
n=n^{th}\ term\\
r=\textit{common ratio}
\end{cases}[/tex]
[tex]\bf -----------------------------\\ \begin{array}{ccllll} term&value\\ x&y\\ \textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\ 1&5\cdot (1.25)^{1-1}\\ 2&5\cdot (1.25)^{2-1}\\ 3&5\cdot (1.25)^{3-1}\\ 4&5\cdot (1.25)^{4-1}\\ 5&5\cdot (1.25)^{5-1}\\ 6&5\cdot (1.25)^{6-1}\\ \end{array}[/tex]
[tex]\bf -----------------------------\\ \begin{array}{ccllll} term&value\\ x&y\\ \textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\ 1&5\cdot (1.25)^{1-1}\\ 2&5\cdot (1.25)^{2-1}\\ 3&5\cdot (1.25)^{3-1}\\ 4&5\cdot (1.25)^{4-1}\\ 5&5\cdot (1.25)^{5-1}\\ 6&5\cdot (1.25)^{6-1}\\ \end{array}[/tex]
Answer:Given below
Step-by-step explanation:
Given
a=5
common ratio(r)=1.25
therefore next term is [tex]ar,ar^2....... [/tex]
[tex]a_2=ar=5\times 1.25=6.25[/tex]
[tex]a_3=ar^2=5\times 1.25^2=7.8125 [/tex]
[tex] a_4=ar^3=5\times 1.25^3=9.765[/tex]
[tex]a_5=ar^4=5\times 1.25^4=12.207 [/tex]
[tex]a_6=ar^5=5\times 1.25^5=15.258[/tex]