value of a2+a4+a6+……+a98 IS EQUAL TO 93.
Given, the common difference (d) =1
Let a1=a Given, a1+a2+……+a98=137
⇒(98/2)(2a+97)=137 [Sn=n/2[2a+(n−1)d]
⇒2a+97=137/49…eq.(1)
a2+a4+…+a98 (n=49 terms)
a2+a4+…+a98=49/2(a2+a98)
a2+a4+…+a98=49/2[(a+1)+a+97]
a2+a4+…+a98=49/2[2a+97+1]
a2+a4+…+a98=49/2[(137/49)+1] [using eq. 1]
a2+a4+…+a98=137/2+49/2
a2+a4+…+a98=186/2 =93
LEARN MORE about sum like this-
https://brainly.com/question/28852161
#SPJ4