Respuesta :

This statement is false.

We know if Mv is a given matrix with v as the eigenvector corresponding to the eigenvalue k then the following relation holds:

                                     Mv = kv

Also, we know that sum of two vectors [tex]v_{1}[/tex] and [tex]v_{2}[/tex] is given by ([tex]v_{1}[/tex] + [tex]v_{2}[/tex]).

Using it, here we will explain whether the given statement is true or not.

Let us consider the given matrix to be A with the eigenvalues [tex]λ_{1}[/tex] and [tex]λ_{2}[/tex] . Let the corresponding eigenvectors be [tex]v_{1}[/tex] and [tex]v_{2}[/tex] respectively. We get,

         A[tex]v_{1}[/tex] =[tex]λ_{1}[/tex][tex]v_{1}[/tex]    ,    A[tex]v_{2}[/tex] = [tex]λ_{2}[/tex][tex]v_{2}[/tex]

Now, we calculate,

                               A ([tex]v_{1} + v_{2}[/tex] ) = A[tex]v_{1} + Av_{2}[/tex]

                                                  = [tex]λ_{1} v_{1} + λ_{2}v_{2}[/tex]

                                                  ≠[tex]k ( v_{1} + v_{2} )[/tex]

This shows that [tex](v_{1} + v_{2} )[/tex] is not the eigenvector of matrix A.

Hence, the given statement is - false.

Read more about the  eigenvector :

https://brainly.com/question/14406741

#SPJ4