Respuesta :
Answer:
- A) y = 2*0.8ˣ
- B) y = 3.5*3ˣ
-----------------------------------------
Part A
Use the coordinates to determine the function.
Point (0, 2):
- 2 = a*b⁰ ⇒ 2 = a
The function becomes:
- y = 2bˣ
It has a multiplier of 0.8, so b = 0.8, so the function is:
- y = 2*0.8ˣ
Part B
Use the first point:
- 3.5 = a*b⁰ ⇒ 3.5 = a
Use the second point:
- 31.5 = 3.5*b²
- 9 = b²
- b = √9
- b = 3
The function is:
- y = 3.5*3ˣ
Answer:
[tex]\textsf{a)} \quad y=2(0.8)^x[/tex]
[tex]\text{b)} \quad y=3.5(3)^x[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function}\\\\$y=ab^x$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $b$ is the base (growth/decay factor) in decimal form.\\\end{minipage}}[/tex]
Question (a)
Given:
- y-intercept = (0, 2) ⇒ a = 2
- multiplier = 0.8 ⇒ b = 0.8
Substitute the values of a and b into the exponential function formula:
[tex]\implies y=2(0.8)^x[/tex]
Question (b)
The y-intercept is when x = 0. Therefore, given the function passes through point (0, 3.5), the y-intercept is 0.35 ⇒ a = 3.5.
Substitute the found value of a and given point (2, 31.5) into the exponential function formula and solve for b:
[tex]\implies 31.5=3.5b^2[/tex]
[tex]\implies b^2=9[/tex]
[tex]\implies b=3[/tex]
Substitute the values of a and b into the exponential function formula:
[tex]\implies y=3.5(3)^x[/tex]