Respuesta :

A= B + Bcd

A-B= B - B +Bcd

A-B = Bcd

A-B/B = Bcd/B

A-1=cd/d


A-1/d =c


c=A-1/d

Answer

Given that: [tex]A = B+Bcd[/tex]

The distributive property says that:

[tex]a \cdot(b+c) = a\cdot b+ a\cdot c[/tex]

Then;

Apply distributive property to the given equation:

[tex]A = B(1+cd)[/tex]

Divide both sides by B we get;

[tex]\frac{A}{B} = 1+cd[/tex]

Subtract 1 from both sides we get;

[tex]\frac{A}{B}-1 = cd[/tex]

Simplify:

[tex]\frac{A-B}{B} = cd[/tex]

Divide both sides by d we get;

[tex]\frac{A-B}{Bd} = c[/tex]

Therefore, the formula for c is :

[tex]c=\frac{A-B}{Bd}[/tex]