Respuesta :
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+\frac{r}{n}\right)^{nt}
\qquad
\begin{cases}
A=\textit{current amount}\\
P=\textit{original amount deposited}\to &\$7000\\
r=rate\to 5\%\to \frac{5}{100}\to &0.05\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{quarterly, means 4 times}
\end{array}\to &4\\
t=years\to &10
\end{cases}[/tex]
how about monthly? well, there are 12 months in a year, so it will the compound cycle is 12, thus [tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \qquad \begin{cases} A=\textit{current amount}\\ P=\textit{original amount deposited}\to &\$7000\\ r=rate\to 5\%\to \frac{5}{100}\to &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, 12 months, thus} \end{array}\to &12\\ t=years\to &10 \end{cases}[/tex]
how about monthly? well, there are 12 months in a year, so it will the compound cycle is 12, thus [tex]\bf \qquad \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \qquad \begin{cases} A=\textit{current amount}\\ P=\textit{original amount deposited}\to &\$7000\\ r=rate\to 5\%\to \frac{5}{100}\to &0.05\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{monthly, 12 months, thus} \end{array}\to &12\\ t=years\to &10 \end{cases}[/tex]
Quarterly
A=5,000×(1+0.05÷4)^(4×10)
A=8,218.097
Monthly
A=5,000×(1+0.05÷12)^(12×10)
A=8,235.047
A=5,000×(1+0.05÷4)^(4×10)
A=8,218.097
Monthly
A=5,000×(1+0.05÷12)^(12×10)
A=8,235.047