HELP!!!!!!!!!!!
The graph of f(x) = 4x3 – 13x2 + 9x + 2 is shown below.
How many roots of f(x) are rational numbers?
A.) 0
B.) 1
C.) 2
D.) 3

HELP The graph of fx 4x3 13x2 9x 2 is shown below How many roots of fx are rational numbers A 0 B 1 C 2 D 3 class=

Respuesta :

Answer:

One rational root.

B is correct.

Step-by-step explanation:

Given: The graph of [tex]f(x)=4x^3-13x^2+9x+2[/tex]

First we factor the given function.

Factor of f(x)

f(2)=0 , x-2 must be factor of f(x)

[tex]f(x)=(x-2)(4x^2-5x-1)[/tex]

Because f(2)=0

So, x=2 is rational root of f(x)

Now we find another root using quadratic formula.

[tex]ax^2+bx+c=0[/tex]

[tex]\text{Quadratic formula: }x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

where, a=4, b=-5 and c=-1

[tex]x=\dfrac{-(-5)\pm \sqrt{(-5)^2-4(4)(-1)}}{2(4)}[/tex]

[tex]x=\dfrac{5\pm\sqrt{41}}{8}[/tex]

Another roots are,

[tex]x=\dfrac{5+\sqrt{41}}{8},\dfrac{5-\sqrt{41}}{8}[/tex]

So, these are irrational root because [tex]\sqrt{41}[/tex] is irrational.

Hence, The given function has 1 rational root and 2 irrational roots.

Answer:

B on edgeentrash

Step-by-step explanation: