Although the vast majority of DNA in most eukaryotes is found in the nucleus, some DNA is present within the mitochondria of animals, plants, and fungi and within the chloroplasts of plants. These organelles are the main cellular sites for ATP formation, during oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts (Chapter 16). Many lines of evidence indicate that mitochondria and chloroplasts evolved from bacteria that were endocytosed into ancestral cells containing a eukaryotic nucleus, forming endosymbionts. Over evolutionary time, most of the bacte-rial genes encoding components of the present-day organelles were transferred to the nucleus. However, mitochondria and chloroplasts in today’s eukaryotes retain circular DNAs encoding proteins essential for organellar function as well as the ribosomal and transfer RNAs required for their translation. Thus eukaryotic cells have multiple genetic systems: a predominant nuclear system and secondary systems with their own DNA in the mitochondria and chloroplasts.