Answer-
The functions f(x) and g(x) are reflections over the y-axis.
Solution-
While reflecting any point with coordinates (x, y) over y-axis or x=0 line, the point shifts to (-x, y)
[tex](x,y)\rightarrow (-x,y)[/tex]
While reflecting any point with coordinates (x, y) over x-axis or y=0 line, the point shifts to (x, -y)
[tex](x,y)\rightarrow (x,-y)[/tex]
The given functions are,
[tex]f(x)=2^x,\ g(x)=(\frac{1}{2})^x[/tex]
Applying the formula for reflection of f(x) over y axis would be,
[tex]\Rightarrow y=2^{-x}[/tex]
[tex]\Rightarrow y={(2^{-1})}^{x}[/tex]
[tex]\Rightarrow y={(\frac{1}{2})}^{x}[/tex]
This is the equation for g(x)
Therefore, f(x) and g(x) are reflections over the y-axis.