Respuesta :

C
6x^2-13X-5=0
(3X+1)(2X-5)
3x-1=0
X=1/3. 2x-5=0. X= 5/2

Answer:

Option A is correct.

[tex]\{\frac{5}{3}, -\frac{1}{3}\}[/tex]

Step-by-step explanation:

Given the equation: [tex]6x^2=13x+5[/tex]

we can write this as:

[tex]6x^2-13x-5=0[/tex]

A quadratic equation is of the form: [tex]ax^2+bx+c=0[/tex]

then the solution is given by:

[tex]x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

On comparing with the given equation we have;

a = 6, b = -13 and c = -5 then;

Substitute the given values we have

[tex]x = \frac{-(-13)\pm\sqrt{(-13)^2-4(6)(-5)}}{2(6)}[/tex]

[tex]x = \frac{13\pm\sqrt{169+120}}{12}[/tex]

Simplify:

[tex]x = \frac{13 \pm\sqrt{289}}{12}[/tex]

[tex]x = \frac{13 \pm 17}{12}[/tex]

Then;

[tex]x = \frac{13+17}{12}[/tex] and [tex]x = \frac{13-17}{12}[/tex]

⇒[tex]x = \frac{20}{12}[/tex] and [tex]x = -\frac{4}{12}[/tex]

⇒[tex]x = \frac{5}{3}[/tex] and [tex]x = -\frac{1}{3}[/tex]

Therefore, the solution for the given equation are:

[tex]\{\frac{5}{3}, -\frac{1}{3}\}[/tex]