State the coordinates of the reflection of the isosceles trapezoid across the line of reflection y = –x.

A=
B=
C=
D=

State the coordinates of the reflection of the isosceles trapezoid across the line of reflection y x A B C D class=

Respuesta :

Based on the given image, the coordinates of the pre image are:
A (-3,4)
B (-1,4)
C (1,1)
D (-5,1)

When you do a reflection in the line y = -x ; (x,y) coordinate becomes (-y,-x)

A (-3,4) → (-(4),-(-3)) → A' (-4,3)
B (-1,4) → (-(4),-(-1)) → B' (-4,1)
C (1,1) → (-(1),-(1)) → C' (-1,-1)
D (-5,1) → (-(1),-(-5)) → D' (-1,5)

I attached what the reflection will look like over line y = -x

Ver imagen taskmasters

From the figure, the coordinates will be given below.

  • A = (-3, 4)  ⇒ A' = (-4, 3)
  • B = (-1, 4)   ⇒ B' = (-4, 1)
  • C = (1, 1)     ⇒ C' = (-1, -1)
  • D = (-5, 1)   ⇒ D' = (-1, 5)

What is a transformation of geometry?

A spatial transformation is each mapping of feature shapes to itself, and it maintains some spatial correlation between figures.

Reflection does not change the size and shape of the geometry.

The coordinates of the reflection of the isosceles trapezoid across the line of reflection, y = –x.

From the figure, the coordinates will be

A = (-3, 4)  ⇒ A' = (-4, 3)

B = (-1, 4)   ⇒ B' = (-4, 1)

C = (1, 1)     ⇒ C' = (-1, -1)

D = (-5, 1)   ⇒ D' = (-1, 5)

More about the transformation of geometry link is given below.

https://brainly.com/question/22532832

#SPJ5

Ver imagen jainveenamrata