Respuesta :
Chain rule:
[tex]g(x)=f(3x)\implies g'(x)=3f'(3x)[/tex]
so
[tex]g'(0.1)=3f'(0.3)=3(3)=9[/tex]
[tex]g(x)=f(3x)\implies g'(x)=3f'(3x)[/tex]
so
[tex]g'(0.1)=3f'(0.3)=3(3)=9[/tex]
Answer:
Option C.
Step-by-step explanation:
It is given that f is a differential function on the interval [0, 1].
[tex]g(x)=f(3x)[/tex]
Differentiate with respect to x.
[tex]g'(x)=f'(3x)\dfrac{d}{dx}(3x)[/tex]
[tex]g'(x)=3f'(3x)[/tex]
We need to find the value of f'(0.1).
Substitute x=0.1 in the above equation.
[tex]g'(0.1)=3f'(3(0.1))[/tex]
[tex]g'(0.1)=3f'(0.3)[/tex]
From the given table it is clear that f'(0.3)=3.
[tex]g'(0.1)=3(3)[/tex]
[tex]g'(0.1)=9[/tex]
The value of g'(0.1) is 9.
Therefore, the correct option is C.