Find the surface area of that part of the plane 9 x 2 y z = 3 that lies inside the elliptic cylinder \frac{x^2}{81} \frac{y^2}{4} =1 surface area =

Respuesta :

To find the surface area of the plane, we must find the partial derivative of [tex] f(x) = 9x + 2y + z -3 [/tex]. Then, we have

[tex] \frac {\partial f}{\partial x} = 9 [/tex]
[tex] \frac {\partial f}{\partial y} = 2 [/tex]
[tex] \frac {\partial f}{\partial z} = 1 [/tex]

We can compute for the surface area of the elliptical cylinder,

[tex] \frac{x^2}{81} + \frac{y^2}{4} = 1 [/tex] , with

[tex] Surface Area = \int \int\limits_C { \sqrt{ \frac{9^{2} + 2^{2} + 1^{2}}{1^{2}} } } \, dx \,dy [/tex]

knowing that we're working on the plane's surface from the cylinder,

[tex] Surface Area =  \sqrt{86} \pi \int \int \,dx  \,dy [/tex]
[tex] Surface Area = \sqrt{86}  \pi (9-0)(2-0) [/tex]
[tex] Surface Area = 18 \sqrt{86} \pi [/tex]

Thus, the area around the plane of f(x) is [tex] 18 \sqrt{86} \pi [/tex].

Answer: [tex] 
18 \sqrt{86} \pi [/tex] units²