Respuesta :
We have two points, if we want to find AB, which is a distance, we can simply use the distance formula:
d = [tex]\sqrt{8^{2} + 2^{2}} = \sqrt{64 + 4} = \sqrt{68} =~ 8.25 units[/tex]
d = [tex]\sqrt{8^{2} + 2^{2}} = \sqrt{64 + 4} = \sqrt{68} =~ 8.25 units[/tex]
Answer:
The Length of AB is 8.2 units .
Step-by-step explanation:
Formula
[tex]Distance\ formula = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]
As given
If A(0,0) and B(8,2) .
[tex]AB = \sqrt{(8-0)^{2}+(2-0)^{2}}[/tex]
[tex]AB = \sqrt{(8)^{2}+(2)^{2}}[/tex]
[tex]AB = \sqrt{64+4}[/tex]
[tex]AB = \sqrt{68}[/tex]
[tex]\sqrt{68}= 8.2\ units[/tex]
[tex]AB =8.2\ units\ (Approx)[/tex]
Therefore the Length of AB is 8.2 units .