Given the following point on the unit circle, find the angle, to the nearest tenth of a degree, of the terminal side through that point, 0≤θ<360.
P=(-1,0)

Respuesta :

Look at a unit circle and find the point (-1,0), we see that it is 180 degrees
Ver imagen ircuthbert

A unit circle is simply a circle that has a radius of 1.

The measure of the angle is 180 degrees.

The domain is given as:

[tex]\mathbf{0 \le \theta \le 360}[/tex]

The point is given  as:

[tex]\mathbf{P = (-1,0)}[/tex]

A point is represented as:

[tex]\mathbf{(\cos(\theta),\sin(\theta)) = (x,y)}[/tex]

So, we have:

[tex]\mathbf{(\cos(\theta),\sin(\theta)) = (-1,0)}[/tex]

By comparison, we have:

[tex]\mathbf{\cos(\theta) = -1}[/tex]

[tex]\mathbf{\sin(\theta) = 0}[/tex]

Calculate tangent

[tex]\mathbf{\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}}[/tex]

[tex]\mathbf{\tan(\theta) = \frac{0}{-1}}[/tex]

[tex]\mathbf{\tan(\theta) = 0}[/tex]

The above values means that the angle is on the quadrant.

So, the possible values are:

[tex]\mathbf{\theta = 90, 180, 270,360}[/tex]

Because cosine is negative, the angle becomes

[tex]\mathbf{\theta =180}[/tex]

Hence, the measure of the angle is 180 degrees.

Read more about unit circles at:

https://brainly.com/question/22380956