Respuesta :
Answer:
(A) acute
Step-by-step explanation:
We are given three side lengths that are:
m(A)=10 in
m(B)=12 in and
m(C)=15 in
Now, using the law of cosines, we get
[tex]cosA=\frac{(12)^2+(15)^2-(10)^2}{2(12)(15)}[/tex]
[tex]CosA=\frac{144+225-100}{360}[/tex]
[tex]CosA=\frac{269}{360}[/tex]
[tex]A=41.65^{\circ}[/tex]
Also, [tex]CosB=\frac{(10)^2+(15)^2-(12)^2}{2(10)(15)}[/tex]
[tex]CosB=\frac{181}{300}[/tex]
[tex]B=52.89^{\circ}[/tex]
Therefore, ∠C=180-∠A-∠B
∠C=180-41.65-52.89
∠C=85.46°
which is an acute angle, therefore [tex]10^{2}+12^{2}>15^{2}[/tex].
The triangle is an acute triangle because 10^2 + 12^2 > 15^2
The side lengths of the triangles are:
10, 12 and 15
The smallest side lengths are: 10 and 12
The sum of the squares of these side lengths is
[tex]10^2 + 12^2[/tex]
For the triangle to be an acute triangle, then the following must be true
[tex]10^2 + 12^2 > 15^2[/tex]
Evaluate the exponents
[tex]244 > 225[/tex]
The above inequality is true.
Hence, the triangle is an acute triangle because 10^2 + 12^2 > 15^2
Read more about triangles at:
https://brainly.com/question/17972372