Respuesta :

4 times 3=12
12 times 3=36
I think you want us to find the sum of the geometric sequence to n=15

the sum is
[tex]S= \frac{a_1(1-r^{n})}{1-r} [/tex]
a1=first term=4
n=15
r=common ratio=3

[tex]S= \frac{4(1-3^{15})}{1-3} [/tex]
[tex]S= \frac{4(1-14348907)}{-2} [/tex]
S=-2(-14348906)
S=28697812

it adds to 28697812
I've attached a picture below of the formula for a finite geometric sequence. It includes an infinite geometric sequence formula for your reference, too.

[tex]a_1 = 4[/tex]
[tex]r(ratio)= 3 [/tex]
[tex]n=15[/tex]

Plug in the values. 

[tex]S_{15} = 4*( \frac{1-3^{15}}{1-3} )[/tex]
[tex]S_{15} = 4*( \frac{1-3^{15}}{-2} )[/tex]
[tex]S_{15} = 4*( \frac{1-14348907}{-2} )[/tex]
[tex]S_{15} = 4*( \frac{-14348906}{-2} )[/tex]
[tex]S_{15} = 4*7174453[/tex]
S₁₅ = 28697812
Ver imagen Аноним