Answer:
[tex]a_8=-128x^8-384x^{7}[/tex]
Step-by-step explanation:
G.P. = [tex]x+3,-2x^2-6x,4x^3+12x^2+...[/tex]
So, first term = a=x+3
Common ratio = [tex]r =\frac{a_2}{a_1}[/tex]
= [tex]\frac{-2x^2-6x}{x+3}[/tex]
= [tex]\frac{-2x(x+3)}{x+3}[/tex]
= [tex]-2x[/tex]
So, r = -2x
nth term of G.P. = [tex]a_n=ar^{n-1}[/tex]
Substitute n = 8
[tex]a_8=(x+3)(-2x)^{8-1}[/tex]
[tex]a_8=(x+3)(-2x)^{7}[/tex]
[tex]a_8=(x+3)(-128)(x)^{7}[/tex]
[tex]a_8=-128x^8-384x^{7}[/tex]
Hence the eighth term of the sequence is [tex]a_8=-128x^8-384x^{7}[/tex]