Marina correctly simplified the expression [tex] \frac{-4a^-^2b^4}{8a^-^6b^-^3} [/tex], Her simplifed expression is below.
[tex]-1/2a^4b^?[/tex]
The exponent of the variable b in Marina’s solution should be what?

Respuesta :

[tex]\bf \cfrac{-4a^{-2}b^4}{8a^{-6}b^{-3}}[/tex]

so, in short, without too much fuss, you simply move the variable from the bottom to the top, and the exponent sign must change, or the other way around, from the top to the bottom, and the exponent sign changes

so   [tex]\bf \cfrac{-4a^{-2}b^4}{8a^{-6}b^{-3}}\implies \cfrac{-4}{8}\cdot a^{-2}a^6b^4b^3\implies -\cfrac{1}{2}a^{-2+6}b^{4+3}\implies -\cfrac{1}{2}a^4b^7[/tex]

The expression can be simplified by using arithmetic operations and the value of power of b is equal to 7 and this can be determinne by compairing thee simplified expression with the given expression.

Given :

Expression -   [tex]\dfrac{-4a^{-2}b^4}{8a^{-6}b^{-3}}[/tex]

Following steps can be use to simplify the above expression:

Step 1 - Multiply numerator and denominator by [tex]a^6[/tex].

[tex]= \dfrac{-4a^{-2}b^4}{8a^{-6}b^{-3}}\times \dfrac{a^6}{a^6}[/tex]

[tex]= \dfrac{-4a^{4}b^4}{8b^{-3}}[/tex]

Step 2 - Multiply numerator and denominator by [tex]b^3[/tex].

[tex]=\dfrac{-4a^4b^4}{8b^{-3}}\times \dfrac{b^3}{b^3}[/tex]

[tex]=\dfrac{-4a^4b^7}{8}[/tex]

Step 3 - Now, divide 4 by 8.

[tex]=\dfrac{-a^4b^7}{2}[/tex]

By compairing the above expression by the given expression it can be concluded that the value of power of b is equal to 7.

For more information, refer the link given below:

https://brainly.com/question/17921485