Use the quadratic formula to find both solutions to the quadratic equation given below. 4x^2+5x+1=0
check all that apply
a: x=-1
b: x=-3+(square root)-7/8
c: x=-1/4
d: x=-3+(square root)7/8
e: x=-3-(square root)7/8
f: x=-3-(square root)-7/8

Respuesta :

A and C. Those are the roots

The quadratic equation has a leading degree of 2. The solution to the given quadratic equation is [tex]x=\frac{-5 \pm\sqrt{9}}{8} \\[/tex]

Quadratic formula

The standard quadratic equation is given as:

ax² + bx + c = 0

The general equation is given as:

[tex]x=\frac{-b \pm\sqrt{b^2-4ac}}{2a}[/tex]

Given the quadratic expression

4x² + 5x + 1 = 0

a = 4

b = 5

c = 1

Substitute

[tex]x=\frac{-5 \pm\sqrt{5^2-4(4)(1)}}{2(4)}\\ x=\frac{-5 \pm\sqrt{9}}{8} \\[/tex]

Hence the solution to the given quadratic equation is [tex]x=\frac{-5 \pm\sqrt{9}}{8} \\[/tex]

Learn more on quadratic equation here; https://brainly.com/question/1214333

#SPJ2