Respuesta :
If we solve for tan(x) algebraically, we are then able to refer to the unit circle to find the solutions. Solving for tan(x) algebraically will give us tan(x) = (square root of 3)/3. On the unit circle, there are two possibilities with those coordinates: Pi/6 and 7pi/6

Answer:
[tex] x = \frac{\pi}{6}[/tex].
Step-by-step explanation:
We have the following equation:
[tex]3tan^2x - 1 =0[/tex]
[tex]3tan^2x=1[/tex]
[tex]tan^2x=\frac{1}{3}[/tex]
We use the property [tex]tanx = \frac{sinx}{cosx}[/tex] in our equation as follows:
[tex]\frac{sin^2x}{cos^2x}=\frac{1}{3}[/tex]
and then, we use the identity [tex] cos^2x = 1 - sin^2x[/tex]:
[tex]sin^2x=\frac{1}{3}cos^2x[/tex]
[tex]sin^2x=\frac{1}{3}(1- sin^2x)[/tex]
[tex]sin^2x=\frac{1}{3} - \frac{1}{3}sin^2x[/tex]
[tex]sin^2x+\frac{1}{3}sin^2x=\frac{1}{3}[/tex]
[tex]\frac{4}{3}sin^2x = \frac{1}{3}[/tex]
[tex]sin^2x = \frac{1}{4}[/tex]
[tex]sinx = \sqrt{\frac{1}{4}}[/tex]
[tex]sinx =\pm\frac{1}{2}[/tex]
As we are over the interval (0,pi) we use the positive value:
[tex]sinx =\frac{1}{2}[/tex]
[tex]x =sin^{-1}(\frac{1}{2})[/tex]
[tex] x = \frac{\pi}{6}[/tex].