12,14 and 16 are the length of the sides on the triangle
Heron’s formula: Area = square root s(s-a)(s-b)(s-c)

What is the area of triangle ABC? Round to the nearest hundredth of a square unit.

17.75 square units
81.33 square units
372.71 square units
957.74 square units

Respuesta :

the answer is B)81.33 square units

Answer: 81.33 square units


Step-by-step explanation:

Given sides of triangle = 12,14 and 16 are the a,b and c respectively.

Thus the perimeter of triangle [tex]=a+b+c=12+14+16=42[/tex]

The semi perimeter of triangle [tex]s=\frac{42}{2}=21[/tex]

By Heron's formula

Area of triangle = [tex]\sqrt{s(s-a)(s-b)(s-c)}[/tex]

[tex]=\sqrt{21(21-12)(21-14)(21-16)}\\\\=\sqrt{21(9)(7)(5)}\\\\=\sqrt{6615}\\=81.3326\approx81.33\text{ square units}[/tex]

The area of triangle =81.33 square units.