Respuesta :
12x2 − 156x + 480
Factor out the GCF: 12(x2 − 13x + 40)
Then, set to zero.
12(x2 − 13x + 40) =0
12(x − 8)(x − 5) = 0
x = 8 or x = 5
Factor out the GCF: 12(x2 − 13x + 40)
Then, set to zero.
12(x2 − 13x + 40) =0
12(x − 8)(x − 5) = 0
x = 8 or x = 5
Answer:
The zeroes of the quadratic function are 8 and 5.
Step-by-step explanation:
The given quadratic expression is
[tex]12x^2-156x+480[/tex]
Taking out the greatest common factor from each term.
[tex]12(x^2-13x+40)[/tex]
The middle term can be written as -8x-5x.
[tex]12(x^2-8x-5x+40)[/tex]
[tex]12(x(x-8)-5(x-8))[/tex]
[tex]12(x-8)(x-5)[/tex]
The factor form of the given expression is 12(x-8)(x-5). Equate the factors form equal to zero, to find the zeroes of the given expression.
[tex]12(x-8)(x-5)=0[/tex]
Using zero product property, we get
[tex]x=8,5[/tex]
Therefore the zeroes of the quadratic function are 8 and 5.