Respuesta :

12x2 − 156x + 480

Factor out the GCF: 12(x2 − 13x + 40)

Then, set to zero.

12(x2 − 13x + 40) =0
12(x − 8)(x − 5) = 0 
x = 8 or x = 5

Answer:

The zeroes of the quadratic function are 8 and 5.

Step-by-step explanation:

The given quadratic expression is

[tex]12x^2-156x+480[/tex]

Taking out the greatest common factor from each term.

[tex]12(x^2-13x+40)[/tex]

The middle term can be written as -8x-5x.

[tex]12(x^2-8x-5x+40)[/tex]

[tex]12(x(x-8)-5(x-8))[/tex]

[tex]12(x-8)(x-5)[/tex]

The factor form of the given expression is 12(x-8)(x-5). Equate the factors form equal to zero, to find the zeroes of the given expression.

[tex]12(x-8)(x-5)=0[/tex]

Using zero product property, we get

[tex]x=8,5[/tex]

Therefore the zeroes of the quadratic function are 8 and 5.