One of the sides of a pentagon has length 12. Which of the following points, when paired with (2,3), will make a side equal to this length

(14, 15)
(2, −9)
(−2, −3)
(−9, 2)

Respuesta :

Given 2 points A(a,b) and M(k,l), the distance between them is found by the formula:

[tex]|AM|= \sqrt{ (a-k)^{2} + (b-l)^{2} } [/tex]

Let (k, l)=(2, 3), substituting in the above formula:

[tex]12= \sqrt{ (a-2)^{2} + (b-3)^{2} }[/tex]

[tex](a-2)^{2} + (b-3)^{2}=12 ^{2}=144 [/tex]

check each of the pairs given:

for (a, b)=(14, 15):

[tex](a-2)^{2} + (b-3)^{2}=(14-2)^{2} + (15-3)^{2}=(12)^{2} + (12)^{2}=288[/tex]

for (a, b)=(2, -9):

[tex](2-2)^{2} + (-9-3)^{2}=0+(-12)^{2}=144[/tex]

for (a, b)=(-2, -3):

[tex](-2-2)^{2} + (-3-3)^{2}=(-4)^{2} + (-9)^{2}=16+81=97[/tex]

for (a, b)=(-9, 2):

[tex](-9-2)^{2} + (2-3)^{2}=(-11)^{2} + (-1)^{2}=121+1=122[/tex]



Answer: (2, -9)


Answer:

(2, −9)

Step-by-step explanation: