Please simplify the flowing:
[tex]\frac{x^2 + 12^x + 35}{3x + 15}[/tex]

*I will give brainliest to the correct answer with steps!!*
*Need this in 45 minutes!!*

Respuesta :

msm555

Answer:

[tex] \dfrac{x + 7}{3} [/tex]

Step-by-step explanation:

Note: There may be a typo mistake in the question. It must be:

[tex] \dfrac{x^2 + 12x + 35}{3x + 15} [/tex]

To simplify the given expression [tex]\dfrac{x^2 + 12x + 35}{3x + 15}[/tex], we can factor the numerator and denominator and cancel common factors:

[tex] \dfrac{x^2 + 12x + 35}{3x + 15} [/tex]

Factor the numerator:

[tex] \dfrac{x^2 + (5+7)x + 35}{3x + 15} [/tex]

[tex] \dfrac{x^2 + 5x +7x + 35}{3x + 15} [/tex]

[tex] \dfrac{x(x+5)+7(x+5)}{3x + 15} [/tex]

[tex] \dfrac{(x + 5)(x + 7)}{3x + 15} [/tex]

Factor out the common factor in the denominator:

[tex] \dfrac{(x + 5)(x + 7)}{3(x + 5)} [/tex]

Now, cancel the common factor of [tex]x + 5[/tex] in the numerator and denominator:

[tex] \dfrac{\cancel{(x + 5)}(x + 7)}{3\cancel{(x + 5)}} [/tex]

The simplified expression is:

[tex] \dfrac{x + 7}{3} [/tex]