Which of the following is the correct factorization of the polynomial below? 8x3 +64y3 OA. (4x+4y)(2x+8y) B. (2x+4y)(4x² - 8xy+16y²) C. (4x+2y)(4x² - 2xy + 16y²) D. The polynomial is irreducible.​

Respuesta :

Answer:

B. (2x + 4y)(4x² - 8xy + 16y²)

Step-by-step explanation:

To factorize the polynomial 8x³ + 64y³, begin by expressing the numerical coefficients as cubes.

We can express 8 as 2³, and 64 as 4³, so:

[tex]8x^3 + 64y^3=2^3x^3 + 4^3y^3[/tex]

Apply the Product of Powers exponent rule: (aⁿbⁿ) = (ab)ⁿ.

[tex](2x)^3 + (4y)^3[/tex]

Now we can use the sum of cubes formula: a³ + b³ = (a + b)(a² - ab + b²).

[tex](2x + 4y)((2x)^2 - (2x)(4y) + (4y)^2)[/tex]

Simplify:

[tex](2x + 4y)(4x^2 - 8xy + 16y^2)[/tex]

Therefore, the correct factorization of the given polynomial is:

[tex]\Large\boxed{\boxed{(2x + 4y)(4x^2 - 8xy + 16y^2)}}[/tex]