Given:
segment AU = 20x + 108,
UB = 273,
BC = 703,
UV = 444,
AV = 372 and
AC = 589.
Point U lies on AB and
V lies on AC.
UV is perpendicular to AC.
Therefore, the similar triangles are AUV and ABC
So
the similarity is: segment AU / segment UV = segment AB / segment BC
20x + 108 20X + 381
--------- = ---------------
372 589
(20x + 108)* 589 = (20X + 381)*372
11780 X + 63612 = 7440X + 141732
4340 X - 78120 = 0
4340 X = 78120
X = 78120/4340 = 18
Answer:
x = 18
To check:
AU = 20*18 + 108 = 360
+ 108 = 468
AB = 741
468/372 = 741/589
Which the two are equal ratios