Respuesta :
[tex]\bf \qquad \textit{power of two complex numbers}
\\\\\
[\quad r[cos(\theta)+isin(\theta)]\quad ]^{{ n}}\implies r^{{ n}}[cos({{ n}}\cdot \theta)+isin({{ n}}\cdot \theta)]\\\\
-------------------------------\\\\[/tex]
[tex]\bf z^5=\left[ 1\left[ cos\left( \frac{4\pi }{7} \right)+i\ sin\left( \frac{4\pi }{7} \right) \right] \right]^5 \\\\\\ z^5=1^5\left[ cos\left( 5\cdot \frac{4\pi }{7} \right)+i\ sin\left( 5\cdot \frac{4\pi }{7} \right) \right] \\\\\\ z^5=1\left[ cos\left( \frac{20\pi }{7} \right)+i\ sin\left( \frac{20\pi }{7} \right) \right]\implies z^5= cos\left( \frac{20\pi }{7} \right)+i\ sin\left( \frac{20\pi }{7} \right)[/tex]
[tex]\bf z^5=\left[ 1\left[ cos\left( \frac{4\pi }{7} \right)+i\ sin\left( \frac{4\pi }{7} \right) \right] \right]^5 \\\\\\ z^5=1^5\left[ cos\left( 5\cdot \frac{4\pi }{7} \right)+i\ sin\left( 5\cdot \frac{4\pi }{7} \right) \right] \\\\\\ z^5=1\left[ cos\left( \frac{20\pi }{7} \right)+i\ sin\left( \frac{20\pi }{7} \right) \right]\implies z^5= cos\left( \frac{20\pi }{7} \right)+i\ sin\left( \frac{20\pi }{7} \right)[/tex]
Answer: (cos(20pi/7)+isin(20pi/7))
Step-by-step explanation:
got it right on a p e x :)