Respuesta :
1.
EF is the median of the trapezoid ABCD, thus
[tex]|EF|= \frac{|AB|+|DC|}{2}= \frac{20+8}{2}=14 [/tex] units.
2.
The median EF bisects the altitude into 2 segments of equal length 6 units.
Thus the height of trapezoid EFCD is 6, and its 2 bases have length 14 and 8 units.
3.
From the area of the trapezoid formula:
[tex]A_E_F_C_D=Height* \frac{Base_1+Base_2}{2}=6* \frac{14+8}{2}=6* \frac{22}{2}=66 [/tex] (square units)
Answer: 66 square units
EF is the median of the trapezoid ABCD, thus
[tex]|EF|= \frac{|AB|+|DC|}{2}= \frac{20+8}{2}=14 [/tex] units.
2.
The median EF bisects the altitude into 2 segments of equal length 6 units.
Thus the height of trapezoid EFCD is 6, and its 2 bases have length 14 and 8 units.
3.
From the area of the trapezoid formula:
[tex]A_E_F_C_D=Height* \frac{Base_1+Base_2}{2}=6* \frac{14+8}{2}=6* \frac{22}{2}=66 [/tex] (square units)
Answer: 66 square units
