Respuesta :
[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\
% function transformations for trigonometric functions
\begin{array}{rllll}
% left side templates
f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}}
\\\\
f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\
f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}}
\end{array}
\\\\
-------------------\\\\[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\[/tex]
[tex]\bf \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]
with that template in mind, let's see
[tex]\bf \begin{array}{llll} y=&1.5sin&(4x)\\ &\ \uparrow &\ \uparrow \\ &A&B \end{array}\\\\ -------------------------------\\\\ A=1.5\quad \textit{shrinks by 1.5, or an extra 0.5 from the parent \underline{sin(x)}} \\\\\\ B=4\qquad period\implies \cfrac{2\pi }{B}\implies \cfrac{2\pi }{4}\implies \cfrac{\pi }{2}[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\ \left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\[/tex]
[tex]\bf \bullet \textit{vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]
with that template in mind, let's see
[tex]\bf \begin{array}{llll} y=&1.5sin&(4x)\\ &\ \uparrow &\ \uparrow \\ &A&B \end{array}\\\\ -------------------------------\\\\ A=1.5\quad \textit{shrinks by 1.5, or an extra 0.5 from the parent \underline{sin(x)}} \\\\\\ B=4\qquad period\implies \cfrac{2\pi }{B}\implies \cfrac{2\pi }{4}\implies \cfrac{\pi }{2}[/tex]