Respuesta :
Rectangle:
A = BH
= (18)(4)
= 72
Finding area of square:
72 = 2x
/2 /2
36 = x
Finding perimeter of square using area:
P = √a * 4
= √36 * 4
= 6 * 4
= 24
Therefore the perimeter of the square is 24 inches. I am not sure so sorry for any mistakes.
A = BH
= (18)(4)
= 72
Finding area of square:
72 = 2x
/2 /2
36 = x
Finding perimeter of square using area:
P = √a * 4
= √36 * 4
= 6 * 4
= 24
Therefore the perimeter of the square is 24 inches. I am not sure so sorry for any mistakes.
[tex]\bf
\textit{area of a rectangle}\\\\
A_r=lw\quad
\begin{cases}
l=length\\
w=width\\
-----\\
l=18\\
w=4
\end{cases}\implies A_r=18\cdot 4\implies A_r=72\\\\
-------------------------------\\\\[/tex]
[tex]\bf \textit{area of a square}\\\\ A_s=lw\quad \textit{area of a rectangle}\\\\ A_r=lw\quad \begin{cases} l=length\\ w=width\\ l=w=x \end{cases}\implies A_s=x\cdot x\implies A_s=x^2\\\\ -------------------------------\\\\ A_r=2\cdot A_s\implies 72=2x^2\implies\cfrac{72}{2}=x^2\implies 36=x^2 \\\\\\ \sqrt{36}=x\implies \boxed{6=x}[/tex]
the square has 4 sides, thus its perimeter is 6+6+6+6.
[tex]\bf \textit{area of a square}\\\\ A_s=lw\quad \textit{area of a rectangle}\\\\ A_r=lw\quad \begin{cases} l=length\\ w=width\\ l=w=x \end{cases}\implies A_s=x\cdot x\implies A_s=x^2\\\\ -------------------------------\\\\ A_r=2\cdot A_s\implies 72=2x^2\implies\cfrac{72}{2}=x^2\implies 36=x^2 \\\\\\ \sqrt{36}=x\implies \boxed{6=x}[/tex]
the square has 4 sides, thus its perimeter is 6+6+6+6.