Respuesta :

check the picture below.  so the circle looks like so, and those points, are pretty much endpoints for the radius "r", thus

[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ -3}}\quad ,&{{ 3}})\quad % (c,d) &({{ 1}}\quad ,&{{ 6}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ r=\sqrt{[1-(-3)]^2+[6-3]^2}\implies r=\sqrt{(1+3)^2+(6-3)^2} \\\\\\ r=\sqrt{4^2+3^2}\implies r=\sqrt{25}\implies \boxed{r=5}\\\\ -------------------------------\\\\ \textit{area of a circle}\\\\ A=\pi r^2\qquad r=5\implies \boxed{A=25\pi }[/tex]
Ver imagen jdoe0001