The function f(x) = –2/7(5/3)^x is reflected over the y-axis to create g(x). Which points represent ordered pairs on g(x)? Check all that apply. (–7, –10.206) (–2.5, –4.474) (0, –1.773) (0.5, –0.221) (4, –0.017) (9, –0.003)

Respuesta :

Given:
[tex]f(x)=- \frac{2}{7} ( \frac{5}{3} )^{x}[/tex]

We are given ordered pairs of values for g(x) whose x-values are
-7, -2.5, 0, 0.5, 4, and 9.

After reflection across the x-axis, f(x) should have negative x-values, but the same y-values.
Use the calculator to create a table of f(x), with x-values of
7, 2.5, 0, -0.5, -4, and -9. 

x:               7        2.5            0      -0.5         -4          -9
f(x):  -10.206   -1.025  -0.286   -0.221  -0.037  -0.003

The corresponding values for g(x) will match f(x), but the x-values will be multiplied by -1.

Answer:
Of the given answers, only these are correct:
(-7, -10.206)
(0.5, -0.221)
(9, 0.003)

f(x) reflect over the y-axis. So, the values of x becomes negative but the values of y are same that is, 7, 2.5, 0, -0.5, -4, -9 so the points represent ordered pairs on g(x) will be: (-7,-10.206), (0.5,-0.221), and (9,-0.003).

Given :

[tex]f(x)= -\dfrac{2}{7}(\dfrac{5}{3})^x[/tex]

Given x-values: -7, -2.5, 0, 0.5, 4, 9.

Now, f(x) reflect over the y-axis. So, the values of x becomes negative but the values of y are same that is, 7, 2.5, 0, -0.5, -4, -9.

Now, create the table of f(x).

x                7           2.5           0        -0.5        -4         -9

f(x)     -10.206    -1.025    -0.286   -0.221  -0.037  -0.003

Now, for g(x) the value of x becomes negative and the value of y remains unchanged.

Therefore, the points that represent ordered pairs on g(x) are: (-7,-10.206), (-2.5,-1.025), (0,-0.286), (0.5,-0.221), (4,-0.037), and (9,-0.003).

So, the correct options are A), D), and F).

For more information, refer the link given below:

https://brainly.com/question/13432851