Answer:
the correct answer is C. 720 g.
Explanation:
[tex]To find the mass of \(9.86 \times 10^{24}\) molecules of CO₂, we can use the following steps:[/tex]
[tex]1. Calculate the number of moles of CO₂ using Avogadro's number (\(6.022 \times 10^{23}\) molecules/mol):[/tex]
[tex]\[ \text{Number of moles} = \frac{\text{Number of molecules}}{\text{Avogadro's number}} \][/tex]
[tex]\[ \text{Number of moles} = \frac{9.86 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]
[tex]\[ \text{Number of moles} \approx 16.37 \text{ mol} \][/tex]
2. Use the molar mass of CO₂ (44.01 g/mol) to find the mass:
[tex]\[ \text{Mass} = \text{Number of moles} \times \text{Molar mass} \][/tex]
[tex]\[ \text{Mass} = 16.37 \text{ mol} \times 44.01 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass} \approx 720.54 \text{ g} \][/tex]
[tex]Therefore, the mass of \(9.86 \times 10^{24}\) molecules of CO₂ is approximately 720.54 grams.[/tex]
The closest option provided is:
C) 720 g
So, the correct answer is C. 720 g.