Rachel puts $700.00 into an account to use for school expenses. The account earns 14% interest, compounded annually. How much will be in the account after 5 years?

Respuesta :

Answer: 1347.79 (Sorry for taking so long to answer)

Step-by-step explanation:

Understand the Problem:

Rachel puts $700.00 into an account, and it earns 14% interest compounded annually. You need to find out how much will be in the account after 5 years.

Identify the Given Values:

Principal amount - $700.00

Annual interest rate - 14%

Number of times interest is compounded per year -  1 (compounded annually)

Time in years - 5 years

Plug in the values with the Compound Interest Formula:

A = P (1 + 0.14/1)^1*5

Calculate the Exponential Expression:

A = 700 * (1.14)^5

Evaluate the Exponential Expression:

A ≈ 700 * 1.925414

Calculate the Final Amount:

A ≈ 1347.79

After 5 years, there will be approximately $1347.79 in the account.