Respuesta :

Answer:

BC = 48 cm

Step-by-step explanation:

given OA = 25 cm ( radius of circle ) and OD = 7 cm

OD is the perpendicular bisector of chord BC , so

BD = DC

Note that OC is the radius of the circle = 25 cm

triangle ODC is right with ∠ ODC = 90°

using Pythagoras' identity in the right triangle to find DC

DC² + OD² = OC² ( substitute values )

DC² + 7² = 25²

DC² + 49 = 625 ( subtract 49 from both sides )

DC² = 576 ( take square root of both sides )

DC = [tex]\sqrt{576}[/tex] = 24

Then

BC = BD + DC = 24 + 24 = 48 cm